Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20.813
1.
Acta Orthop ; 95: 200-205, 2024 May 06.
Article En | MEDLINE | ID: mdl-38708569

BACKGROUND AND PURPOSE: Reduced range of motion (ROM) and spasticity are common secondary findings in cerebral palsy (CP) affecting gait, positioning, and everyday functioning. These impairments can change over time and lead to various needs for intervention. The aim of this study was to analyze the development path of the changes in hamstring length, knee extension, ankle dorsiflexion, and spasticity in hamstrings and gastrosoleus from childhood into adulthood in individuals with CP at the Gross Motor Function Classification System (GMFCS) levels I-V. METHODS: A longitudinal cohort study was undertaken of 61,800 measurements in 3,223 individuals with CP, born 1990-2017 and followed for an average of 8.7 years (range 0-26). The age at examination varied between 0 and 30 years. The GMFCS levels I-V, goniometric measurements, and the modified Ashworth scale (MAS) were used for repeated assessments of motor function, ROM, and spasticity. RESULTS: Throughout the follow-up period, knee extension and hamstring length exhibited a consistent decline across all individuals, with more pronounced decreases evident in those classified at GMFCS levels III-V. Ankle dorsiflexion demonstrated a gradual reduction from 15° to 5° (GMFCS I-IV) or 10° (GMFCS V). Spasticity levels in the hamstrings and gastrosoleus peaked between ages 5 and 7, showing a propensity to increase with higher GMFCS levels. CONCLUSION: Passive ROM continues to decrease to 30 years of age, most pronouncedly for knee extension. Conversely, spasticity reached its peak at a younger age, with a more notable occurrence observed in the gastrosoleus compared with the hamstrings. Less than 50% of individuals had spasticity corresponding to MAS 2-4 at any age.


Ankle Joint , Cerebral Palsy , Knee Joint , Muscle Spasticity , Range of Motion, Articular , Humans , Cerebral Palsy/physiopathology , Cerebral Palsy/complications , Muscle Spasticity/physiopathology , Muscle Spasticity/etiology , Longitudinal Studies , Range of Motion, Articular/physiology , Child , Adolescent , Male , Female , Adult , Young Adult , Knee Joint/physiopathology , Child, Preschool , Ankle Joint/physiopathology , Infant , Hamstring Muscles/physiopathology , Cohort Studies
2.
Ned Tijdschr Tandheelkd ; 131(5): 191-200, 2024 May.
Article Nl | MEDLINE | ID: mdl-38715531

An internal derangement of the temporomandibular joint is described as a deviation in the position or shape of the joint tissues. Such a change is only functionally manifest if it interferes with smooth movements of the jaw joint. There are a number of internal derangements associated with jaw movements in which popping jaw joint sounds can occur. Examples are an anteriorly or posteriorly displaced disc and hypermobility of the condylar head. Although most internal derangements are harmless and only cause minor discomfort to patients, disc displacements can in some cases develop into a clinical problem, for example when there is a limitation of mouth opening (so-called closed lock) or an inability to close the mouth (so-called open lock). Most patients with these conditions do not require any or only conservative treatment.


Temporomandibular Joint Disorders , Humans , Temporomandibular Joint/physiology , Temporomandibular Joint/physiopathology , Range of Motion, Articular/physiology , Joint Instability/diagnosis , Joint Dislocations/etiology , Joint Dislocations/therapy , Joint Dislocations/diagnosis
3.
Sci Rep ; 14(1): 10282, 2024 05 04.
Article En | MEDLINE | ID: mdl-38704481

During fatigued conditions, badminton players may experience adverse effects on their ankle joints during smash landings. In addition, the risk of ankle injury may vary with different landing strategies. This study aimed to investigate the influence of sport-specific fatigue factors and two backhand smash actions on ankle biomechanical indices. Thirteen female badminton players (age: 21.2 ± 1.9 years; height: 167.1 ± 4.1 cm; weight: 57.3 ± 5.1 kg; BMI: 20.54 ± 1.57 kg/m2) participated in this study. An 8-camera Vicon motion capture system and three Kistler force platforms were used to collect kinematic and kinetic data before and after fatigue for backhand rear-court jump smash (BRJS) and backhand lateral jump smash (BLJS). A 2 × 2 repeated measures analysis of variance was employed to analyze the effects of these smash landing actions and fatigue factors on ankle biomechanical parameters. Fatigue significantly affected the ankle-joint plantarflexion and inversion angles at the initial contact (IC) phase (p < 0.05), with both angles increasing substantially post-fatigue. From a kinetic perspective, fatigue considerably influenced the peak plantarflexion and peak inversion moments at the ankle joint, which resulted in a decrease the former and an increase in the latter after fatigue. The two smash landing actions demonstrated different landing strategies, and significant main effects were observed on the ankle plantarflexion angle, inversion angle, peak dorsiflexion/plantarflexion moment, peak inversion/eversion moment, and peak internal rotation moment (p < 0.05). The BLJS landing had a much greater landing inversion angle, peak inversion moment, and peak internal rotation moment compared with BRJS landing. The interaction effects of fatigue and smash actions significantly affected the muscle force of the peroneus longus (PL), with a more pronounced decrease in the force of the PL muscle post-fatigue in the BLJS action(post-hoc < 0.05). This study demonstrated that fatigue and smash actions, specifically BRJS and BLJS, significantly affect ankle biomechanical parameters. After fatigue, both actions showed a notable increase in IC plantarflexion and inversion angles and peak inversion moments, which may elevate the risk of lateral ankle sprains. Compared with BRJS, BLJS poses a higher risk of lateral ankle sprains after fatigue.


Ankle Joint , Racquet Sports , Humans , Female , Racquet Sports/physiology , Biomechanical Phenomena , Ankle Joint/physiology , Young Adult , Fatigue/physiopathology , Adult , Muscle Fatigue/physiology , Ankle Injuries/physiopathology , Ankle Injuries/etiology , Ankle/physiology , Range of Motion, Articular/physiology , Athletes
4.
Sci Rep ; 14(1): 10428, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714762

Muscle strength assessments are vital in rehabilitation, orthopedics, and sports medicine. However, current methods used in clinical settings, such as manual muscle testing and hand-held dynamometers, often lack reliability, and isokinetic dynamometers (IKD), while reliable, are not easily portable. The aim of this study was to design and validate a wearable dynamometry system with high accessibility, accuracy, and reliability, and to validate the device. Therefore, we designed a wearable dynamometry system (WDS) equipped with knee joint torque sensors. To validate this WDS, we measured knee extension and flexion strength in 39 healthy adults using both the IKD and WDS. Comparing maximal isometric torque measurements, WDS and IKD showed strong correlation and good reliability for extension (Pearson's r: 0.900; intraclass correlation coefficient [ICC]: 0.893; standard error of measurement [SEM]: 9.85%; minimal detectable change [MDC]: 27.31%) and flexion (Pearson's r: 0.870; ICC: 0.857; SEM: 11.93%; MDC: 33.07%). WDS demonstrated excellent inter-rater (Pearson's r: 0.990; ICC: 0.993; SEM: 4.05%) and test-retest (Pearson's r: 0.970; ICC: 0.984; SEM: 6.15%) reliability during extension/flexion. User feedback from 35 participants, including healthcare professionals, underscores WDS's positive user experience and clinical potential. The proposed WDS is a suitable alternative to IKD, providing high accuracy, reliability, and potentially greater accessibility.


Knee Joint , Muscle Strength Dynamometer , Muscle Strength , Torque , Wearable Electronic Devices , Humans , Male , Adult , Female , Knee Joint/physiology , Muscle Strength/physiology , Reproducibility of Results , Range of Motion, Articular/physiology , Young Adult , Equipment Design
5.
J Orthop Surg Res ; 19(1): 282, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711065

BACKGROUND: The aim of this study was to compare the effects of four different immobilization methods [single sugar tong splint (SSTS), double sugar tong splint (DSTS), short arm cast (SAC), and long arm cast (LAC)] commonly used for restricting forearm rotation in the upper extremity. METHODS: Forty healthy volunteers were included in the study. Dominant extremities were used for measurements. Basal pronation and supination of the forearm were measured with a custom-made goniometer, and the total rotation arc was calculated without any immobilization. Next, the measurements were repeated with the SAC, LAC, SSTS and DSTS. Each measurement was compared to the baseline value, and the percentage of rotation restriction was calculated. RESULTS: The most superior restriction rates were observed for the LAC (p = 0.00). No statistically significant difference was detected between the SSTS and DSTS in terms of the restriction of supination, pronation or the rotation arc (p values, 1.00, 0.18, and 0.50, respectively). Statistically significant differences were not detected between the SAC and the SSTS in any of the three parameters (p values, 0.25; 1.00; 1.00, respectively). When the SAC and DSTS were compared, while there was no significant difference between the two methods in pronation (p = 0.50), a statistically significant difference was detected in supination (p = 0.01) and in the total rotation arc (p = 0.03). CONCLUSION: The LAC provides superior results in restricting forearm rotation. The SAC and SSTS had similar effects on forearm rotation. The DSTS, which contains, in addition to the SSTS, a sugar tong portion above the elbow, does not provide additional rotational stability.


Forearm , Immobilization , Splints , Humans , Male , Female , Adult , Rotation , Forearm/physiology , Young Adult , Immobilization/methods , Supination/physiology , Pronation/physiology , Casts, Surgical , Healthy Volunteers , Range of Motion, Articular/physiology
6.
BMC Neurol ; 24(1): 144, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724916

BACKGROUND: Restoring shoulder function is critical for upper-extremity rehabilitation following a stroke. The complex musculoskeletal anatomy of the shoulder presents a challenge for safely assisting elevation movements through robotic interventions. The level of shoulder elevation assistance in rehabilitation is often based on clinical judgment. There is no standardized method for deriving an optimal level of assistance, underscoring the importance of addressing abnormal movements during shoulder elevation, such as abnormal synergies and compensatory actions. This study aimed to investigate the effectiveness and safety of a newly developed shoulder elevation exoskeleton robot by applying a novel optimization technique derived from the muscle synergy index. METHODS: Twelve chronic stroke participants underwent an intervention consisting of 100 robot-assisted shoulder elevation exercises (10 × 10 times, approximately 40 min) for 10 days (4-5 times/week). The optimal robot assist rate was derived by detecting the change points using the co-contraction index, calculated from electromyogram (EMG) data obtained from the anterior deltoid and biceps brachii muscles during shoulder elevation at the initial evaluation. The primary outcomes were the Fugl-Meyer assessment-upper extremity (FMA-UE) shoulder/elbow/forearm score, kinematic outcomes (maximum angle of voluntary shoulder flexion and elbow flexion ratio during shoulder elevation), and shoulder pain outcomes (pain-free passive shoulder flexion range of motion [ROM] and visual analogue scale for pain severity during shoulder flexion). The effectiveness and safety of robotic therapy were examined using the Wilcoxon signed-rank sum test. RESULTS: All 12 patients completed the procedure without any adverse events. Two participants were excluded from the analysis because the EMG of the biceps brachii was not obtained. Ten participants (five men and five women; mean age: 57.0 [5.5] years; mean FMA-UE total score: 18.7 [10.5] points) showed significant improvement in the FMA-UE shoulder/elbow/forearm score, kinematic outcomes, and pain-free passive shoulder flexion ROM (P < 0.05). The shoulder pain outcomes remained unchanged or improved in all patients. CONCLUSIONS: The study presents a method for deriving the optimal robotic assist rate. Rehabilitation using a shoulder robot based on this derived optimal assist rate showed the possibility of safely improving the upper-extremity function in patients with severe stroke in the chronic phase.


Electromyography , Exoskeleton Device , Feasibility Studies , Muscle, Skeletal , Shoulder , Stroke Rehabilitation , Humans , Male , Female , Stroke Rehabilitation/methods , Middle Aged , Aged , Shoulder/physiopathology , Shoulder/physiology , Electromyography/methods , Muscle, Skeletal/physiopathology , Muscle, Skeletal/physiology , Range of Motion, Articular/physiology , Exercise Therapy/methods , Stroke/physiopathology , Robotics/methods , Biomechanical Phenomena/physiology , Adult
7.
J Orthop Surg Res ; 19(1): 209, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561837

BACKGROUND: Previous studies have demonstrated the clinical efficacy of decompression alone in lower-grade spondylolisthesis. A higher rate of surgical revision and a lower rate of back pain relief was also observed. However, there is a lack of relevant biomechanical evidence after decompression alone for lower-grade spondylolisthesis. PURPOSE: Evaluating the biomechanical characteristics of total laminectomy, hemilaminectomy, and facetectomy for lower-grade spondylolisthesis by analyzing the range of motion (ROM), intradiscal pressure (IDP), annulus fibrosus stress (AFS), facet joints contact force (FJCF), and isthmus stress (IS). METHODS: Firstly, we utilized finite element tools to develop a normal lumbar model and subsequently constructed a spondylolisthesis model based on the normal model. We then performed total laminectomy, hemilaminectomy, and one-third facetectomy in the normal model and spondylolisthesis model, respectively. Finally, we analyzed parameters, such as ROM, IDP, AFS, FJCF, and IS, for all the models under the same concentrate force and moment. RESULTS: The intact spondylolisthesis model showed a significant increase in the relative parameters, including ROM, AFS, FJCF, and IS, compared to the intact normal lumbar model. Hemilaminectomy and one-third facetectomy in both spondylolisthesis and normal lumbar models did not result in an obvious change in ROM, IDP, AFS, FJCF, and IS compared to the pre-operative state. Moreover, there was no significant difference in the degree of parameter changes between the spondylolisthesis and normal lumbar models after undergoing the same surgical procedures. However, total laminectomy significantly increased ROM, AFS, and IS and decreased the FJCF in both normal lumbar models and spondylolisthesis models. CONCLUSION: Hemilaminectomy and one-third facetectomy did not have a significant impact on the segment stability of lower-grade spondylolisthesis; however, patients with LDS undergoing hemilaminectomy and one-third facetectomy may experience higher isthmus stress on the surgical side during rotation. In addition, total laminectomy changes the biomechanics in both normal lumbar models and spondylolisthesis models.


Spinal Fusion , Spondylolisthesis , Humans , Spondylolisthesis/surgery , Finite Element Analysis , Lumbar Vertebrae/surgery , Laminectomy/methods , Spinal Fusion/methods , Biomechanical Phenomena , Range of Motion, Articular/physiology , Decompression
8.
BMC Musculoskelet Disord ; 25(1): 319, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654270

BACKGROUND: To evaluate the effectiveness of instrument-assisted soft tissue mobilization (IASTM) on range of motion (ROM). METHODS: We performed a literature search of the PubMed, Embase, Web of Science, and Cochrane Library databases from inception to December 23, 2023. Randomized controlled trials that compared treatment groups receiving IASTM to controls or IASTM plus another treatment(s) to other treatment(s) among healthy individuals with or without ROM deficits, or patients with musculoskeletal disorders were included. The Cochrane risk of bias tool was used to assess the risk of bias. RESULTS: Nine trials including 450 participants were included in the quantitative analysis. The IASTM was effective in improving ROM in degree in healthy individuals with ROM deficits and patients with musculoskeletal disorders (n=4) (MD = 4.94, 95% CI: 3.29 to 6.60), and in healthy individuals without ROM deficits (n=4) (MD = 2.32, 95% CI: 1.30 to 3.34), but failed to improve ROM in centimeter in healthy individuals with ROM deficits (n=1) (MD = 0.39, 95% CI: -1.34 to 2.11, p=0.66, I2 = 88%). CONCLUSIONS: IASTM can improve ROM in degree in healthy individuals with or without ROM deficits, or in patients with musculoskeletal disorders (with very low to low certainty). TRIAL REGISTRATION: The PROSPERO registration ID is CRD42023425200.


Musculoskeletal Diseases , Range of Motion, Articular , Humans , Range of Motion, Articular/physiology , Musculoskeletal Diseases/physiopathology , Musculoskeletal Diseases/therapy , Treatment Outcome , Randomized Controlled Trials as Topic/methods
9.
Int Orthop ; 48(6): 1501-1506, 2024 Jun.
Article En | MEDLINE | ID: mdl-38561523

PURPOSE: There is no consensus on the optimal treatment of bony mallet finger in the paediatric population due to a lack of studies in children. The Ishiguro technique is simple and less invasive, and treatment with K-wire fixation seems to provide better results for extension lag in bony mallet finger according to the literature. A retrospective cross-sectional study with long-term follow-up was performed to evaluate the functional and clinical outcomes of this method in children. Preoperative and intraoperative predictors of outcome were investigated. METHODS: From June to December 2022, we evaluated 95 children who underwent extension K-wire block from 2002 to 2012. Eighty-four children were included (mean age 14.8 ± 1.68 years) for a mean long-term follow-up of 11.6 ± 2.3 (8-16) years. Clinical and radiographic features were assessed. Pain and functional outcomes were assessed using Crawford criteria, range of motion (ROM) at the distal interphalangeal joint (DIPJ), loss of extension, and VAS scale. Univariate and multivariate regressions were used to assess which variables might predict the worst outcomes at long-term follow-up. RESULTS: Bone union and pain relief were always achieved. There were no complaints of potential growth impairment or nail deformity. 82.1% of patients showed excellent and good results. Fifteen patients had fair results. CONCLUSIONS: Although there are currently no significant differences between surgery and orthosis in adults, the Ishiguro technique is more effective in children when it comes to outcomes in the treatment of mallet fingers. A high percentage of excellent and good results were achieved, and no epiphyseal damage or nail deformity was reported. A strong and significant correlation was found between the worst outcomes and either delayed treatment time or excessive flexion angle.


Bone Wires , Range of Motion, Articular , Humans , Retrospective Studies , Female , Male , Adolescent , Follow-Up Studies , Child , Cross-Sectional Studies , Range of Motion, Articular/physiology , Treatment Outcome , Fracture Fixation, Internal/methods , Fracture Fixation, Internal/instrumentation , Finger Injuries/surgery , Finger Injuries/therapy , Finger Joint/surgery , Finger Joint/physiopathology
10.
Int Orthop ; 48(6): 1453-1461, 2024 Jun.
Article En | MEDLINE | ID: mdl-38580779

PURPOSE: To evaluate the functional and cosmetic effects of elbow supracondylar fractures (SCF) in children with residual rotational deformity. METHODS: Retrospective review cohort of patients with evidence of malrotation after treatment for SCF. An analysis of the postoperative X-ray of 305 consecutive SCF type 3 treated surgically during five years identified 46 elbows with rotational deformity that fulfilled the selection criteria and were recalled for review; only 27 patients agreed to participate. Patients were evaluated clinically and radiographically. Clinically, the elbow and shoulder ROM were assessed. The postoperative fracture rotation (PFR) was radiologically measured using the Berdis method. Results were categorized according to Flynn criteria, and functional outcomes were evaluated with the QuickDASH questionnaire. On final assessment, a radiograph of both elbows was obtained, and measures were compared. Descriptive analysis was made calculating median, range, proportions, and confidence intervals. Non-parametric tests were used to test the association between variables. RESULTS: The group had a median age of four years and a median follow-up of 52 months. Shoulder rotation was asymmetrical in 13 patients; six patients presented a change on carrying angle > 5° (4 varus/2 valgus). The higher the residual rotation, the higher the chances of an altered shoulder rotation (for each degree of PFR, the shoulder rotation was changed to 0.4°). However, there was a low correlation between the amount of rotation and the final carrying angle (r = 0.37). According to Flynn's criteria, over 95% had excellent or good results. CONCLUSION: There was a weak correlation between varus and rotational malalignment. Patients with moderate residual malrotation could be expected to have a good outcome even if some shoulder rotation changes persist.


Elbow Joint , Humeral Fractures , Range of Motion, Articular , Humans , Male , Retrospective Studies , Female , Child , Child, Preschool , Range of Motion, Articular/physiology , Humeral Fractures/surgery , Elbow Joint/surgery , Elbow Joint/physiopathology , Radiography/methods , Elbow Injuries , Treatment Outcome , Rotation , Adolescent , Fracture Fixation, Internal/methods , Fracture Fixation, Internal/adverse effects
11.
Int J Occup Saf Ergon ; 30(2): 635-650, 2024 Jun.
Article En | MEDLINE | ID: mdl-38628045

Objectives. The purpose of this study was to calculate the dynamic air gap thickness between the human body and the turnout gear. Relationships between the air gap thickness and joint range of motion (ROM) were also explored. Methods. The air gap thickness and joint ROM of 12 male firefighters walking in a control condition with no self-contained breathing apparatus (SCBA) and three varying-strapped SCBAs were measured using three-dimensional (3D) body scanning and 3D inertial motion capture. The interpolation technique was employed to predict the air gap thickness curve during walking. The dynamic air gap thickness was compared with the joint ROM to see how they relate to the location and percentage of movement restriction. Results. During the walking, the air gap fluctuated as a sine curve. Carrying SCBA reduced the air gap thickness at the trunk most (F = 11.17, p < 0.001, η2 = 0.63), and adjusting the shoulder strap length altered the air gap distribution at the trunk. The reduced air gap at the pelvis caused an incremental restriction on pelvis rotation. Conclusions. A compatibility design of the shoulder strap and hip belt in SCBA with the turnout jacket is suggested.


Firefighters , Range of Motion, Articular , Humans , Male , Adult , Range of Motion, Articular/physiology , Biomechanical Phenomena , Walking/physiology , Respiratory Protective Devices , Equipment Design
12.
Gait Posture ; 110: 144-149, 2024 May.
Article En | MEDLINE | ID: mdl-38608379

BACKGROUND: Foot deformities (e.g. planovalgus and cavovarus) are very common in children with spastic cerebral palsy (CP), with the midfoot often being involved. Dynamic foot function can be assessed with 3D gait analysis including a multi-segment foot model. Incorporating a midfoot segment in such a model, allows quantification of separate Chopart and Lisfranc joint kinematics. Yet, midfoot kinematics have not previously been reported in CP. RESEARCH QUESTIONS: What is the difference in multi-segment kinematics including midfoot joints between common foot deformities in CP and typically-developing feet? METHODS: 103 feet of 57 children with spastic CP and related conditions were retrospectively included and compared with 15 typically-developing children. All children underwent clinical gait analysis with the Amsterdam Foot Model marker set. Multi-segment foot kinematics were calculated for three strides per foot and averaged. A k-means cluster analysis was performed to identify foot deformity groups that were present within CP data. The deformity type represented by each cluster was based on the foot posture index. Kinematic output of the clusters was compared to typically-developing data for a static standing trial and for the range of motion and kinematic waveforms during walking, using regular and SPM independent t-tests respectively. RESULTS: A neutral, planovalgus and varus cluster were identified. Neutral feet showed mostly similar kinematics as typically-developing data. Planovalgus feet showed increased ankle valgus and Chopart dorsiflexion, eversion and abduction. Varus feet showed increased ankle varus and Chopart inversion and adduction. SIGNIFICANCE: This study is the first to describe Chopart and Lisfranc joint kinematics in different foot deformities of children with CP. It shows that adding a midfoot segment can provide additional clinical and kinematic information. It highlights joint angles that are more distinctive between deformities, which could be helpful to optimize the use of multi-segment foot kinematics in the clinical decision making process.


Cerebral Palsy , Humans , Cerebral Palsy/physiopathology , Child , Biomechanical Phenomena , Male , Female , Retrospective Studies , Foot/physiopathology , Range of Motion, Articular/physiology , Gait Analysis , Gait/physiology , Gait Disorders, Neurologic/physiopathology , Gait Disorders, Neurologic/etiology , Foot Deformities/physiopathology , Foot Joints/physiopathology , Child, Preschool , Adolescent
13.
BMC Surg ; 24(1): 125, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664803

BACKGROUND: The ideal treatment of terrble triad injuries and whether fixation of coronoid process fractures is needed or not are still debated. Therefore, we aimed to investigate if terrible triad injuries necessitate coronoid fracture fixation and evaluate if non-fixation treatments have similar efficacies and outcomes as fixation-treatments in cases of terrible triad injuries. METHODS: From August 2011 to July 2020, 23 patients with acute terrible triad injuries without involvement of the anteromedial facet of the coronoid process were included to evaluate the postoperative clinical and radiological outcomes (minimum follow-up of 20 months). According to the preoperative height loss evaluation of the coronoid process and an intraoperative elbow stability test, seven patients underwent coronoid fracture fixation, and the other eight patients were treated conservatively. The elbow range of motion (ROM), Mayo Elbow Performance Score (MEPS), and modified Broberg-Morrey score were evaluated at the last follow-up. In addition, plain radiographs were reviewed to evaluate joint congruency, fracture union, heterotopic ossification, and the development of arthritic changes. RESULTS: At the last follow-up, the mean arcs of flexion-extension and supination-pronation values were 118.2° and 146.8° in the fixation group and 122.5° and 151.3° in the non-fixation group, respectively. The mean MEPSs were 96.4 in the fixation group (excellent, nine cases; good, tow cases) and 96.7 in the non-fixation group (excellent, ten cases; good, two cases). The mean modified Broberg-Morrey scores were 94.0 in the fixation group (excellent, sevev cases; good, four cases) and 94.0 in the non-fixation group (excellent, ten cases; good, tow cases). No statistically significant differences in clinical scores and ROM were identified between the two groups. However, the non-fixation group showed a significantly lower height loss of the coronoid process than the fixation group (36.3% versus 54.5%). CONCLUSIONS: There were no significant differences in clinical outcomes between the fixation and non-fixation groups in terrible triad injuries.


Elbow Injuries , Elbow Joint , Fracture Fixation, Internal , Range of Motion, Articular , Ulna Fractures , Humans , Male , Adult , Female , Ulna Fractures/surgery , Ulna Fractures/diagnostic imaging , Middle Aged , Fracture Fixation, Internal/methods , Range of Motion, Articular/physiology , Elbow Joint/diagnostic imaging , Elbow Joint/physiopathology , Elbow Joint/surgery , Retrospective Studies , Young Adult , Treatment Outcome , Follow-Up Studies
14.
Gait Posture ; 110: 122-128, 2024 May.
Article En | MEDLINE | ID: mdl-38569401

BACKGROUND: Landing from heights is a common movement for active-duty military personnel during training. And the additional load they carry while performing these tasks can affect the kinetics and ankle kinematic of the landing. Traditional motion capture techniques are limited in accurately capturing the in vivo kinematics of the talus. This study aims to investigate the effect of additional trunk load on the kinematics of the talocrural and subtalar joints during landing, using a dual fluoroscopic imaging system (DFIS). METHODS: Fourteen healthy male participants were recruited. Magnetic resonance imaging was performed on the right ankle of each participant to create three-dimensional (3D) models of the talus, tibia, and calcaneus. High-speed DFIS was used to capture the images of participants performing single-leg landing jumps from a height of 40 cm. A weighted vest was used to apply additional load, with a weight of 16 kg. Fluoroscopic images were acquired with or without additional loading condition. Kinematic data were obtained by importing the DFIS data and the 3D models in virtual environment software for 2D-3D registration. The kinematics and kinetics were compared between with or without additional loading conditions. RESULTS: During added trunk loading condition, the medial-lateral translation range of motion (ROM) at the talocrural joint significantly increased (p < 0.05). The subtalar joint showed more extension at 44-56 ms (p < 0.05) after contact. The subtalar joint was more eversion at 40-48 ms (p < 0.05) after contact under the added trunk load condition. The peak vertical ground reaction force (vGRF) significantly increased (p < 0.05). CONCLUSIONS: With the added trunk load, there is a significant increase in peak vGRF during landing. The medial-lateral translation ROM of the talocrural joint increases. And the kinematics of the subtalar joint are affected. The observed biomechanical changes may be associated with the high incidence of stress fractures in training with added load.


Subtalar Joint , Weight-Bearing , Humans , Male , Biomechanical Phenomena , Subtalar Joint/physiology , Subtalar Joint/diagnostic imaging , Weight-Bearing/physiology , Young Adult , Fluoroscopy , Adult , Magnetic Resonance Imaging , Talus/physiology , Talus/diagnostic imaging , Imaging, Three-Dimensional , Torso/physiology , Range of Motion, Articular/physiology , Ankle Joint/physiology
15.
Sensors (Basel) ; 24(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38676056

This paper introduces a method for measuring 3D tibiofemoral kinematics using a multi-channel A-mode ultrasound system under dynamic conditions. The proposed system consists of a multi-channel A-mode ultrasound system integrated with a conventional motion capture system (i.e., optical tracking system). This approach allows for the non-invasive and non-radiative quantification of the tibiofemoral joint's six degrees of freedom (DOF). We demonstrated the feasibility and accuracy of this method in the cadaveric experiment. The knee joint's motions were mimicked by manually manipulating the leg through multiple motion cycles from flexion to extension. To measure it, six custom ultrasound holders, equipped with a total of 30 A-mode ultrasound transducers and 18 optical markers, were mounted on various anatomical regions of the lower extremity of the specimen. During experiments, 3D-tracked intra-cortical bone pins were inserted into the femur and tibia to measure the ground truth of tibiofemoral kinematics. The results were compared with the tibiofemoral kinematics derived from the proposed ultrasound system. The results showed an average rotational error of 1.51 ± 1.13° and a translational error of 3.14 ± 1.72 mm for the ultrasound-derived kinematics, compared to the ground truth. In conclusion, this multi-channel A-mode ultrasound system demonstrated a great potential of effectively measuring tibiofemoral kinematics during dynamic motions. Its improved accuracy, nature of non-invasiveness, and lack of radiation exposure make this method a promising alternative to incorporate into gait analysis and prosthetic kinematic measurements later.


Imaging, Three-Dimensional , Knee Joint , Ultrasonography , Humans , Biomechanical Phenomena , Knee Joint/physiology , Knee Joint/diagnostic imaging , Ultrasonography/methods , Imaging, Three-Dimensional/methods , Tibia/diagnostic imaging , Tibia/physiology , Range of Motion, Articular/physiology , Femur/physiology , Femur/diagnostic imaging , Knee/physiology , Knee/diagnostic imaging
16.
Sensors (Basel) ; 24(8)2024 Apr 14.
Article En | MEDLINE | ID: mdl-38676133

Two-dimensional (2D) clinical gait analysis systems are more affordable and portable than contemporary three-dimensional (3D) clinical models. Using the Vicon 3D motion capture system as the standard, we evaluated the internal statistics of the Imasen and open-source OpenPose gait measurement systems, both designed for 2D input, to validate their output based on the similarity of results and the legitimacy of their inner statistical processes. We measured time factors, distance factors, and joint angles of the hip and knee joints in the sagittal plane while varying speeds and gaits during level walking in three in-person walking experiments under normal, maximum-speed, and tandem scenarios. The intraclass correlation coefficients of the 2D models were greater than 0.769 for all gait parameters compared with those of Vicon, except for some knee joint angles. The relative agreement was excellent for the time-distance gait parameter and moderate-to-excellent for each gait motion contraction range, except for hip joint angles. The time-distance gait parameter was high for Cronbach's alpha coefficients of 0.899-0.993 but low for 0.298-0.971. Correlation coefficients were greater than 0.571 for time-distance gait parameters but lower for joint angle parameters, particularly hip joint angles. Our study elucidates areas in which to improve 2D models for their widespread clinical application.


Algorithms , Gait Analysis , Gait , Hip Joint , Knee Joint , Walking , Humans , Gait Analysis/methods , Gait/physiology , Hip Joint/physiology , Knee Joint/physiology , Walking/physiology , Male , Biomechanical Phenomena/physiology , Adult , Range of Motion, Articular/physiology , Posture/physiology , Female
17.
Sensors (Basel) ; 24(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38676160

Optical Motion Capture Systems (OMCSs) are considered the gold standard for kinematic measurement of human movements. However, in situations such as measuring wrist kinematics during a hairdressing activity, markers can be obscured, resulting in a loss of data. Other measurement methods based on non-optical data can be considered, such as magneto-inertial measurement units (MIMUs). Their accuracy is generally lower than that of an OMCS. In this context, it may be worth considering a hybrid system [MIMU + OMCS] to take advantage of OMCS accuracy while limiting occultation problems. The aim of this work was (1) to propose a methodology for coupling a low-cost MIMU (BNO055) to an OMCS in order to evaluate wrist kinematics, and then (2) to evaluate the accuracy of this hybrid system [MIMU + OMCS] during a simple hairdressing gesture. During hair cutting gestures, the root mean square error compared with the OMCS was 4.53° (1.45°) for flexion/extension, 5.07° (1.30°) for adduction/abduction, and 3.65° (1.19°) for pronation/supination. During combing gestures, they were significantly higher, but remained below 10°. In conclusion, this system allows for maintaining wrist kinematics in case of the loss of hand markers while preserving an acceptable level of precision (<10°) for ergonomic measurement or entertainment purposes.


Wrist , Humans , Biomechanical Phenomena/physiology , Wrist/physiology , Male , Range of Motion, Articular/physiology , Adult , Movement/physiology , Female
18.
Sensors (Basel) ; 24(8)2024 Apr 21.
Article En | MEDLINE | ID: mdl-38676262

Knee rehabilitation therapy after trauma or neuromotor diseases is fundamental to restore the joint functions as best as possible, exoskeleton robots being an important resource in this context, since they optimize therapy by applying tailored forces to assist or resist movements, contributing to improved patient outcomes and treatment efficiency. One of the points that must be taken into account when using robots in rehabilitation is their interaction with the patient, which must be safe for both and guarantee the effectiveness of the treatment. Therefore, the objective of this study was to assess the interaction between humans and an exoskeleton during the execution of knee flexion-extension movements under various configurations of robot assistance and resistance. The evaluation encompassed considerations of myoelectric activity, muscle recruitment, robot torque, and performed movement. To achieve this, an experimental protocol was implemented, involving an individual wearing the exoskeleton and executing knee flexion-extension motions while seated, with the robot configured in five distinct modes: passive (P), assistance on flexion (FA), assistance on extension (EA), assistance on flexion and extension (CA), and resistance on flexion and extension (CR). Results revealed distinctive patterns of movement and muscle recruitment for each mode, highlighting the complex interplay between human and robot; for example, the largest RMS tracking errors were for the EA mode (13.72 degrees) while the smallest for the CR mode (4.47 degrees), a non-obvious result; in addition, myoelectric activity was demonstrated to be greater for the completely assisted mode than without the robot (the maximum activation levels for the vastus medialis and vastus lateralis muscles were more than double those when the user had assistance from the robot). Tracking errors, muscle activations, and torque values varied across modes, emphasizing the need for careful consideration in configuring exoskeleton assistance and resistance to ensure effective and safe rehabilitation. Understanding these human-robot interactions is essential for developing precise rehabilitation programs, optimizing treatment effectiveness, and enhancing patient safety.


Exoskeleton Device , Knee Joint , Robotics , Humans , Robotics/methods , Knee Joint/physiology , Male , Range of Motion, Articular/physiology , Biomechanical Phenomena , Electromyography/methods , Adult , Torque , Muscle, Skeletal/physiology , Knee/physiology , Movement/physiology
20.
J Sport Rehabil ; 33(4): 282-288, 2024 May 01.
Article En | MEDLINE | ID: mdl-38593993

CONTEXT: Piriformis syndrome is often associated with muscle spasms and shortening of the piriformis muscle (PM). Physical therapy, including static stretching of the PM, is one of the treatments for this syndrome. However, the effective stretching position of the PM is unclear in vivo. This study aimed to determine the effective stretching positions of the PM using ultrasonic shear wave elastography. DESIGN: Observational study. METHODS: Twenty-one healthy young men (22.7 [2.4] y) participated in this study. The shear elastic modulus of the PM was measured at 12 stretching positions using shear wave elastography. Three of the 12 positions were tested with maximum internal rotation at 0°, 20°, or 40° hip adduction in 90° hip flexion. Nine of the 12 positions were tested with maximum external rotation at positions combined with 3 hip-flexion angles (70°, 90°, and 110°) and 3 hip-adduction angles (0°, 20°, and 40°). RESULTS: The shear elastic modulus of the PM was significantly higher in the order of 40°, 20°, and 0° of adduction and higher in external rotation than in internal rotation. The shear elastic modulus of the PM was significantly greater in combined 110° hip flexion and 40° adduction with maximum external rotation than in all other positions. CONCLUSION: This study revealed that the position in which the PM was most stretched was maximum external rotation with 110° hip flexion and 40° hip adduction.


Elasticity Imaging Techniques , Muscle Stretching Exercises , Muscle, Skeletal , Humans , Male , Young Adult , Muscle Stretching Exercises/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/diagnostic imaging , Range of Motion, Articular/physiology , Elastic Modulus/physiology , Adult , Rotation , Hip Joint/physiology , Hip Joint/diagnostic imaging , Piriformis Muscle Syndrome/physiopathology , Piriformis Muscle Syndrome/therapy , Piriformis Muscle Syndrome/diagnostic imaging
...